vacuum distilling at 0.1 mm, 2 (5.6 g, 60.0%) was obtained as a crystalline solid, mp 38-40 °C.

The autoxidation was carried out as before using sodium methoxide (10.8 g, 0.20 mol) in a mixture of 30 mL of hexamethylphosphoramide and 120 mL of DME. By the above workup, 2 and adipic acid were isolated in 41.6 and 24.7% yields, respectively. On standing, a small amount (0.4 g) of a white solid crystallized, mp 150-154 °C. It was recrystallized from acetonitrile. Anal. Calcd for $C_{12}H_{18}O_5$: C, 59.49; H, 7.49. Found: C, 59.43; H, 7.54. It was readily converted to 2 when heated in Me₂SO (performed in an NMR tube). Based on an earlier report, it was found to be the intramolecular hemiacetal of 2.13

Autoxidation of Cyclopentanone. The autoxidation was carried out using cyclopentanone (8.4 g, 0.1 mol) and potassium tert-butoxide (13.0 g, 0.11 mol) as above. Cyclopentane-1,2-dione (1) and glutaric acid were obtained in 35.7 and 18.9% yields, respectively. The diketone 1 was purified by vacuum distillation: mp 56–58 °C; ¹H NMR (CDCl₃) δ 2.10-2.62 (m, 4), 6.50 (t, 1, vinyl), 6.75 (broad s, -OH); ¹³C NMR (CDCl₃) § 187.53, 153.62, 131.36, 32.58, 22.01

Autoxidation of Cycloheptanone. Cycloheptanone (11.2 g, 0.1 mol) was autoxidized in 200 mL of a 3:2 mixture of DME-tert-butyl alcohol using potassium tert-butoxide (13.0 g, 0.11 mol). From the sodium bicarbonate extract a small amount of tarry material was isolated. From the ethyl acetate extract was isolated a light yellow liquid (10.0 g). It was vacuum distilled at 0.1 mm. Fraction 1 (4.0 g), collected between 26-55 °C, was found (by GLC) to be cycloheptanone. By GLC this fraction was found to contain traces of cycloheptane-1,2-dione. Fraction 2 (4.5 g) was collected at 144-148 °C and partly solidified. TLC (silica gel plates, n-hexane) showed that it contained two components. By column chromatography (150 g of Bio-Sil A, 100–200 mesh), 4 and 3 were separated with n-hexane (1.3 g) and with benzene (2.8 g), respectively. On standing, 3 solidified and was recrystallized from *n*-hexane to give a white solid: mp 69–70 °C; IR (CHCl₃) 3450 (OH), 1700 (C=O) cm⁻¹; ¹H NMR (CDCl₃) δ 0.87-2.20 (m, 5), 2.20-3.10 (m, 5), 4.13 (s, 1, -OH); ¹³C NMR (CDCl₃) δ 217.23 and 215.47 (carbonyl carbons). Anal. Calcd for C₁₄H₂₂O₃: C, 70.55; H, 9.31. Found: C, 70.51; H, 9.22.

4 was vacuum distilled, bp 90–93 °C/0.3 mm, to give a pale yellow liquid that was a solid below 10 °C: ¹H NMR (CDCl₃) δ 1.17-2.81 (m, 8), 2.05-2.81 (m, 8), 5.41 (m, 1, vinyl), 6.03 (m, 1, vinyl); ¹³C NMR $(CDCl_3) \delta 123.67 \text{ and } 125.96 (2 \text{ vinyl carbons}), 119.82, 122.50, 146.17,$ and 151.26 (4 furan carbons), 23.70, 24.11, 25.49, 26.66, 28.60, 28.93, 30.75, 30.94. Anal. Calcd for C14H18O: C, 83.12; H, 8.97. Found: C, 82.90; H. 9.04.

Further chromatography with chloroform gave a crystalline compound (~50 mg). It was recrystallized from *n*-hexane: mp 76–78 °C; IR (CHCl₃) 1720 and 1785 cm⁻¹ (C=O). Anal. Calcd for $C_{14}H_{18}O_3$: , 71.77; H, 7.74. Found: C, 71.73; H, 7.91. It was confirmed as a cycloheptanone analogue of 6.

Exclusive Formation of 3. Cycloheptanone was autoxidized, and the reaction mixture was diluted with water and extracted with ethyl acetate. It was washed with sodium bicarbonate solution, dried $(MgSO_4)$, and concentrated in vacuo to give a yellow liquid (10.0 g). The liquid was vacuum distilled, and cycloheptanone (with traces of 1,2-dione) was collected at 26-30 °C/0.1 mm (4.5 g) and 3 at 120-130 °C/0.1 mm (4.0 g) (42.8% conversion; yield of 3, 39.0%).

Conversion of 3 to 4. The aldol 3 (5.0 g, 0.02 mol) was dissolved in 100 mL of ether, 4-5 drops of concentrated HCl was added, and the mixture was stirred at room temperature. The reaction mixture turned brown, and after 30 min it was washed with sodium bicarbonate solution, dried (MgSO₄), and concentrated to give 4, which was vacuum distilled, bp 90-95 °C/0.3 mm (4.0 g, 94.2%).

Autoxidation of Cyclooctanone. Cyclooctanone (12.6 g, 0.1 mol) in 200 mL of DME- tert-butyl alcohol (3:2), using potassium tertbutoxide (13.5 g, 0.11 mol), was autoxidized at -20 °C for 1 h. Along with a small amount of suberic acid (0.2 g), mp 135-140 °C (identical with an authentic sample, IR and mixture melting point), a light brown liquid (10.0 g) was isolated. It was vacuum distilled, and cyclooctane was collected at 25-35 °C/0.1 mm (7.0 g, 48.1% conversion; by GLC it was found to contain a small amount of the corresponding 1,2-diketone) and 5 solidified in the distillation flask (3.5 g, 56.0%), mp 100-130 °C. It was recrystallized from methanol-water (1:1): mp 138–140 °C; IR (CHCl₃) 3580 and 3425 (OH), 1770 and 1700 (C=O) cm⁻¹; ¹H NMR (CDCl₃) δ 2.73 (s, 1, OH, disappears with D₂O), 3.20 (t, 1); mass spectrum, (M⁺) 280; $^{13}\mathrm{C}$ NMR (CDCl_3) δ 219.43 and 216.89 (carbonyl carbons). Anal. Calcd for C₁₆H₂₄O₄: C, 68.54; H, 8.63. Found: C. 68.62; H. 8.74.

Thermal Conversion of 5 to 6. Crude 5 (3.5 g, 0.012 mol) was distilled at 180 °C in an oil bath at 0.1 mm pressure. 6 was collected as a syrupy liquid (2.0 g, 61.1%), which solidified on standing, mp 74-76 °C. It was recrystallized from *n*-hexane: mp 81–83 °C; IR (CHCl₃) 1788 and 1702 cm⁻¹ (C=O); ¹³C NMR (CDCl₃) δ 207.52 and 174.00 (carbonyl carbons), 150.90 and 117.04 (vinyl carbons), 67.43 (spiro carbon); mass spectrum, (M⁺) 262. Anal. Calcd for C₁₆H₂₂O₃: C, 73.25; H, 8.45. Found: C, 73.47; H, 8.66.

Registry No.-1, 3008-40-0; 2, 765-87-7; 2 intramolecular hemiacetal, 33832-15-4; 3, 68258-05-9; 4, 68258-06-0; 5, 68258-07-1; 6, 68258-08-2; 4,5,6,7-tetrahydrospiro[cycloheptane-1,1'(3'H)-isobenzofuran]-2,3'-dione, 68258-09-3; cyclohexanone, 108-94-1; cyclopentanone, 120-92-3; cycloheptanone, 502-42-1; cyclooctanone, 502-49-8.

References and Notes

- (1) T. J. Wallace, H. Pobiner, and A. Schriesheim, J. Org. Chem., 30, 3768 (1965).
- (2) W. v. E. Doering and R. M. Haines, J. Am. Chem. Soc., 76, 482 (1954); (b)
- F. G. Bordwell and A. C. Knipe, *ibid.*, **93**, 3416 (1971).
 (3) (a) R. C. P. Cubbon and C. Hewlett, *J. Chem. Soc. C*, 2978 (1968); (b) H. R. Gershmann, H. J. W. Nieuwenhuis, and A. F. Bickel, *Proc. Chem. Soc.*, (1968); (b) C. Chem. Soc., (1968); (c) H. C. Chem. Soc., (2000); (c) H. C. Chem. Soc., (2000); (c) H. C. Chem. Soc., (2000); (c) H. C. Chem. Soc., (c) H. C. London, 279 (1962); (c) H. R. Gershmann and A. F. Bickel, J. Chem. Soc. C, 2230 (1971).
 C, N. Rao and F. A. Stuber, U.S. Patent 4 018 827, 1977
 C. V. Rao and F. A. Stuber, U.S. Patent 4 018 827, 1977
- (4) D. V. Hao and F. A. Jahosi, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists", Wiley-Interscience, New York, N.Y., p 112.
- (6)The furanone carbonyl of the biacetyl dimer has an infrared frequency at 1770 cm⁻
- (a) A. J. Birch and C. J. Moye, *J. Chem. Soc.*, 412 (1957); (b) C. Venturello and R. D'Aloisio, *Synthesis*, 754 (1977).
 (8) P. M. Burke, W. F. Reynolds, J. C. L. Tam, and P. Yates, *Can. J. Chem.*, 54,
- 1451 (1976). (9) R. T. Conley, "Infrared Spectroscopy", Allyn and Bacon, Boston, 1966,
- 141
- (10) By NMR studies it was found that cyclohexane-1,2-dione exists 91.7% in its enol form.¹¹
 (11) L. DeBorger, M. Anteunis, H. Lammens, and M. Verzele, *Bull. Soc. Chim.*
- Coborger, M. Anteunis, H. Lammens, and M. Verzele, Bull. Soc. Chim. Belg., 73, 73 (1964).
 C. W. N. Cumper, G. B. Leton, and A. I. Vogel, J. Chem. Soc., 2067 (1965). (12)
- M. Bellas and R. H. Good, British Patient 1 423 143, 1976; Chem. Abstr., (13) 85, 20687n (1976)

Mercuric Acetate Oxidation of 1-Vinylcycloalkenes: **Diels-Alder Reactivity of Resultant Allylic Diene Acetates**

Thomas R. Hoye* and Michael J. Rother1

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455

Received August 31, 1978

Diels-Alder chemistry recently has been the subject of accelerated interest among synthetic chemists. Coupling of the inherent power of the Diels-Alder cycloaddition of simple substrates with the use of structurally sophisticated dienes and dienophiles has been the major focus of this effort. Many of the variations of the dienic Diels-Alder partner have arisen from a formal direct replacement of one or more of the vinylic hydrogen atoms of readily available dienes by other substituents. We were interested in obtaining 1-vinylcyclohexene and 1-vinylcyclopentene which were oxidized at C_6 and C_5 , respectively, that is, dienes in which a carbon atom allylic to the diene itself bears a heteroatomic substituent, for use as Diels-Alder dienes. This paper describes the direct oxidation of 1-vinylcyclohexene and 1-vinylcyclopentene and some Diels-Alder reactivity of the resultant diene acetates.

The allylic acetoxylation of 1-(1-cyclohexenyl)cyclohexene (1) by reaction with 2 equiv of mercuric acetate $[Hg(OAc)_2]$

0022-3263/79/1944-0458\$01.00/0 © 1979 American Chemical Society

has been reported² to provide regioisomer 2 (40%). The structural assignment was verified by reaction of 2 with an additional 2 equiv of Hg(OAc)₂, which provided the furan 4 (31% from 2) after hydrolytic elimination of two acetic acid units, thus suggesting 3 as the structure of the diacetate precursor. Moreover, 1-phenylcyclohexene (5) was oxidized in a similar fashion to give acetate 6 (71%). These studies suggested that similar treatment of 1-vinylcycloalkenes might be expected to provide diene acetates of gross structure 7 as the

Oxidation of 1-vinylcyclohexene with 2 equiv of mercuric acetate in acetic acid at 75 °C for 1–2 h gave a mixture of allylic acetates 7a (25–30%), 8a (35–40%), and 9a (\sim 5%) as the only volatile products. Distillation of the crude acetates led to substantial polymerization, as did allowing the crude product mixture to stand at room temperature for several days. Diels–Alder reaction of 7a and 8a (separated by preparative gas chromatography) with dimethyl acetylenedicarboxylate in refluxing toluene gave a nearly 1:1 mixture of acetates 10a and 10b from 7a and only a single diastereomer, 11, from 8a.

Thus, the steric influence of the acetoxy group upon the incoming dienophile was observed to be greater when the allylic substituent was at the "end" of the diene moiety (i.e., as in 8a) than when it was in the "middle" of the diene (i.e., as in 7a).³ The stereochemistry in 11 was assigned assuming a sterically favored approach of the acetylene to the face of the diene anti to the acetoxy group and was supported by a J_{ab} (see 11) value of 10 Hz in the ¹H NMR spectrum. The regiochemistries of 10a + 10b and 11 were tentatively assigned on the basis of more highly deshielded acetoxy methine protons in the spectra of 10a and 10b than in 11. Chemical confirmation of the regio

Figure 1. Eu(fod)₃ shift studies on diene acetates 7a, 8a, and 7b.

assignments involved 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) oxidation of 10a + 10b and 11 to the aromatic acetates 12 and 13, respectively. The position of the acetoxy group in each of these regioisomers was confirmed by ¹H NMR double irradiation experiments. This analysis relied upon the known⁴ larger coupling constants for ortho and para benzylic coupling than for meta benzylic coupling (i.e., $J_{x1} > J_{x2}$ and $J_{y2} > J_{y1}$ for both 12 and 13). This extensive proof of regiochemistry for the Diels-Alder adducts 10a, 10b, and 11 unequivocally established the structural assignments for the diene acetates 7a and 8a themselves.

Oxidation of 1-vinylcyclopentene with $Hg(OAc)_2$ gave only the desired regioisomer 7b (25-35%) free of contamination by its isomer 8b (traces of 9b were occasionally detected in the ¹H NMR spectra of the crude products). We attribute the difference between this outcome and that in the 1-vinylcyclohexene oxidation not to a preferential formation of the desired isomer but rather to a fortuitous destruction of the unwanted diene acetate 8b under the reaction conditions (AcOH, 75 °C). Notice that the absolute yields of 7b (25–35%) and 7a (25-30%) are essentially identical. This greater propensity for decomposition of the cyclopentenyl acetate 8b relative to the cyclohexenyl analogue 8a is consistent with both the known⁵ relative rates of solvolyses of five- vs. sixmembered cyclic substrates and the observed relative ease of dehydration of the 1-vinylcycloalkanols to the starting 1vinylcycloalkenes used in this study.

That the 1-vinylcyclopentenyl acetate obtained in this oxidation was **7b** and not **8b** was determined by comparing the Eu(fod)₃-shifted NMR spectrum of the single cyclopentenyl regioisomer with those of both **7a** and **8a**. The diagnostic aspects of this study are shown in Figure 1. The similar slopes for protons H_t (circles) and H_2 (triangles) in compounds **7a** (solid line) and **7b** (broken line) and the ratios of the H_t/H_2 slopes for any one regioisomer are all consistent with the indicated structural assignments. Protons H_c and H_1 behaved in a manner also consistent with these assignments, but their changes were of smaller magnitude. These data are consistent with a thermodynamic preference for an *s*-trans diene conformation in the complexed acetates. The assignment for **7b**

was confirmed chemically again by conversion to Diels-Alder adducts 14a and 14b (\sim 1:1 mixture) and subsequent aromatization by DDQ to 15.

Finally, a brief study was undertaken to compare the Diels-Alder reactivity of diene acetate 7b with that of its corresponding alcohol, 16, obtained by potassium carbonate catalyzed methanolysis of 7b. Both the relative rates and product diastereomer ratios ($\sim 2:1$) for the reaction of 7b and 16 with maleic anhydride were very similar. Synthetic studies using diene acetates 7a and 7b are currently in progress.

Experimental Section⁶

Oxidation of 1-Vinylcycloalkenes. To freshly distilled 1-vinylcyclohexene⁸ or 1-vinylcyclopentene in glacial acetic acid (0.1–1.0 M) was added mercuric acetate (2.1 equiv). The mixture was magnetically stirred and heated at 75 °C for 1-2 h; the longer times were required for larger scale (5-25 g of diene) reactions. The white mercurous acetate precipitate was filtered and washed with AcOH. The orange filtrate was diluted with five volumes of H_2O and extracted with Et_2O $(5\times)$. The combined ether extracts were washed carefully with saturated NaHCO3 and brine, dried (MgSO4), filtered, and concentrated at aspirator pressure to leave the crude diene acetates as an orange oil

Compounds 7a, 8a, and 9a. The crude mixture of acetates from 1-vinylcyclohexene (50--85% crude mass recovery) could be distilled (bp 50-60 °C, 0.3 mm), but polymerization led to loss of roughly half of the material. The acetates were purified by preparative gas chromatography (10% SE-30, 110 °C) to give 2-ethenylcyclohex-2-enyl ethanoate (7a) [¹H NMR (CDCl₃) § 1.8 (4 H, m), 2.05 (3 H, s), 2.2 (2 H, m), 4.90 (1 H, d, J = 11 Hz), 5.03 (1 H, d, J = 18 Hz), 5.62 (1 H, m), 5.97 (1 H, m), and 6.20 (1 H, dd, J = 11 and 18 Hz); IR (neat) 1735, 1670, 1650, and 1620 cm⁻¹; MS (EI, rel intensity) 166 (<1), 106 (79), 91 (100), and 60 (13). Calcd. for $C_{10}H_{14}O_2$: 166.0993. Found: 166.0983.], 3-ethenylcyclohex-2-enyl ethanoate (8a) [¹H NMR (CDCl₃) δ 1.8 (4 H, m), 2.05 (3 H, s), 2.2 (2 H, m), 5.01 (1 H, d, J = 11 Hz), 5.18 (1 H, d, J = 18 Hz, 5.2 (1 H, m), 5.68 (1 H, m), and 6.32 (1 H, dd, J = 11 and 18 Hz); IR (neat) 1735, 1670, and 1650 cm⁻¹; MS (EI, rel intensity) 166 (16), 106 (52), 91 (100), and 60 (8). Calcd. for C₁₀H₁₄O₂: 166.0993. Found: 166.1006.], and 2-(cyclohex-2-enylidene)ethyl ethanoate (9a). $[^{1}H NMR (CDCl_{3}) \delta 2.05 (3 H, s), 5.65 (2 H, d, J = 7 Hz), 5.3 (1 H, m),$ and 5.9 (2 H, m); IR (neat) 1740, 1695, and 1650 cm⁻¹; MS (EI, rel intensity) 166 (<1), 106 (69), 91 (100), and 60 (18). Calcd. for C₁₀H₁₄O₂: 166.0993. Found: 166.1008.] as colorless liquids which polymerized upon standing.

Compound 7b. The crude product from oxidation of 1-vinylcyclopentene (25-35% yield) was purified by preparative gas chromatography to give, as a colorless oil, 2-ethenylcyclopent-2-enyl ethanoate (7b): ¹H NMR (CDCl₃) § 1.5-2.6 (4 H, m), 2.03 (3 H, s), 5.06 (1 H, d, J = 10 Hz), 5.12 (1 H, d, J = 18 Hz), 5.97 (2 H, m), and 6.42 (1 H, dd, J = 10 and 18 Hz); IR (neat) 1730 and 1640 cm⁻¹; MS (EI, rel intensity) 152 (<1), 92 (100), 91 (97), and 60 (13). Anal. Calcd for C₉H₁₂O₂: C, 71.03; H, 7.95. Found: C, 70.75; H, 7.87.

Diels-Alder Reactions with Dimethyl Acetylenedicarboxylate. The crude mixtures of diene acetates (0.1-1 M in dry toluene) were heated at 100 °C with 1 equiv of dimethyl acetylenedicarboxylate in the presence of 0.05 equiv of 2,6-di-tert-butyl-p-cresol for 16-40 h. Progress of the reaction was monitored by ¹H NMR analysis of concentrated aliquots. Short column chromatography⁷ of the crude products on silica gel (3:1 hexane-EtOAc) gave, in order of elution, 10a (23%) [¹H NMR (CDCl₃) § 1.3-2.0 (4 H, m), 2.03 (3 H, s), 3.0 (2 H, m), 3.3 (1 H, m), 3.72 (3 H, s), 3.78 (3 H, s), 5.32 (1 H, br s), and 6.18 (1 H, br s); IR (CHCl₃) 1730 and 1640 cm⁻¹; MS (CI, NH₃) 326 (M⁺ + 18) and 309 (M⁺ - 1); MS (EI, rel intensity) 216 (30), 189 (51), and 163 (25)], 10b (19%) [¹H NMR (from mixture of 10a and 10b since a homogeneous sample of the latter was not obtained) (CDCl₃) δ 2.12 (3 H, s), 3.72 (3 H, s), 3.75 (3 H, s), 5.06 (1 H, br d, J = 10 Hz), and 5.95 (1 H, br s)], and 11 (30%) [¹H NMR (CDCl₃) & 1.3-2.3 (6 H, m), 1.95 (3 H, s), 2.9 (2 H, m), 3.3 (1 H, m), 3.70 (3 H, s), 3.74 (3 H, s), 4.49 (1 H, ddd, J = 10, 10, and 4 Hz), and 5.46 (1 H, br s); IR (CCl₄) 1735, 1640, and 1595 cm⁻¹; MS (CI, NH₃) 326 (M⁺ + 18); MS (EI, rel intensity) 216 (31), 189 (25), 163 (29), and 43 (100)] from the dienes 7a and 8a. That 7a was the precursor to 10a and 10b and 8a to 11 was confirmed by small scale reactions with purified (PGLC) dienes.

Crude diene 7b led, after short column silica gel chromatography⁷ (9:1 hexane-EtOAc), to an inseparable mixture of 14b (15%) [¹H NMR (CDCl₃) & 2.02 (3 H, s), 3.74 (3 H, s), 3.78 (3 H, s), 5.43 (1 H, m, W_{1/2} = 8 Hz), and 5.8 (1 H, m)], aromatized 15 (17%), and 14a (16%) [¹H NMR (CDCl₃) & 1.4-2.1 (4 H, m), 2.07 (3 H, s), 3.09 (3 H, br s), 3.74 $(3 \text{ H}, \text{s}), 3.78 (3 \text{ H}, \text{s}), 5.52 (1 \text{ H}, \text{br m}, W_{1/2} = 12 \text{ Hz}), \text{ and } 5.70 (1 \text{ H}, \text{s})$ m); IR (neat) 1740 and 1650 cm¹; MS (CI, NH₃) 312 (M⁺ + 18) and $295 (M^+ + 1)$]

DDQ Promoted Aromatization of 10a, 10b, 11, 14a, and 14b. The dihydroaromatic compound was dissolved in toluene (0.1-0.5 M), and 1.2 equiv of DDQ was added. The mixture was heated at 50-70 °C for 4-13 h. The reaction progress was monitored by ¹H NMR analysis of concentrated aliquots. After aromatization was complete, toluene was removed and the residue was purified by simple silica gel chromatography (3:1 hexane-EtOAc) to give the products 12, 13, and 15 (50-67%)

Dimethyl 5-Acetoxy-5,6,7,8-tetrahydro-1,2-naphthalenedicarboxylate (12). Compound 12 was a colorless oil which appeared to lose AcOH upon attempted preparative gas chromatographic purification: ¹H NMR (CDCl₃) § 1.6-2.1 (4 H, m), 2.07 (3 H, s), 2.72 (2 H, m), 3.85 (3 H, s), 3.91 (3 H, s), $5.96 (1 \text{ H}, \text{m}, W_{1/2} = 10 \text{ Hz})$, 7.35 (1 H, m)H, br d, J = 8 Hz), and 7.78 (1 H, br d, J = 8 Hz); IR (CCl₄) 1740 and 1600 cm⁻¹; MS (EI, rel intensity) 275 (49), 246 (97), 232 (67), 215 (89), 214 (82), 213 (60), 205 (43), 200 (50), 199 (87), 186 (48), 155 (56), and 43 (100). Calcd. for $C_{15}H_{15}O_5$ (M⁺ - OCH₃): 275.0919. Found: 275.0934. Calcd. for $C_{14}H_{14}O_4$ (M⁺ - AcOH): 246.0891. Found: 246.0885.

Dimethyl 8-Acetoxy-5,6,7,8-tetrahydro-1,2-naphthalenedicarboxylate (13). Compound 13 was obtained as white crystals after chromatography. These were purified by recrystallization from hexane-EtOAc to give an analytical sample: mp 91-93 °C; ¹H NMR (CDCl₃) § 1.7-2.1 (4 H, m), 2.02 (3 H, s), 2.85 (2 H, m), 3.84 (3 H, s), $3.86 (3 \text{ H}, \text{s}), 6.03 (1 \text{ H}, \text{m}, W_{1/2} = 6 \text{ Hz}), 7.20 (1 \text{ H}, \text{br d}, J = 8 \text{ Hz}), \text{and}$ 7.83 (1 H, d, J = 8 Hz); IR (CCl₄) 1740 and 1600 cm⁻¹; MS (EI rel intensity) 245 (15), 232 (18), 231 (21), and 186 (100). Anal. Calcd for C₁₆H₁₈O₆: C, 62.74; H, 5.92. Found: C, 62.71; H, 5.77

Dimethyl 1-Acetoxy-4,5-indanedicarboxylate (15). Compound 15 was a colorless oil which appeared to lose AcOH upon attempted gas chromatographic purification: ¹H NMR (CDCl₃) δ 2.06 (3 H, s), 2.1 (1 H, m), 2.5 (1 H, m), 3.0 (2 H, m), 3.86 (3 H, s), 3.89 (3 H, s), 6.14 (1 H, br dd, J = 7 and 5 Hz), 7.46 (1 H, br d, J = 8 Hz), and 7.72 (1 H, 1000 Hz)br d, J = 8 Hz); IR (neat) 1740 and 1600 cm⁻¹; MS (CI, NH₃) 310 (M⁺ + 18) and 293 (M⁺ + 1); MS (EI, rel intensity) 261 (9), 232 (17), 201 (43), and 200 (100).

2-Ethenylcyclopent-2-enol (16). Crude acetate 7b (280 mg, 1.84 mmol) was dissolved in absolute MeOH, treated with K₂CO₃ (300 mg, 2.11 mmol), and stirred at room temperature under N_2 for 15 h. A standard workup gave a crude oil (133 mg) that was purified by preparative TLC (2:1 hexane-EtOAc) to leave pure diene alcohol 16 as a colorless oil (104 mg, 0.945 mmol, 45%), some samples of which appeared to polymerize rapidly. One sample was further purified by PGLC to give an analytical sample: ¹H NMR (CDCl₃) § 1.7 (1 H, s), 1.8-2.6 (4 H, m), 4.97 (1 H, br d, J = 6 Hz), 5.10 (1 H, d, J = 11 Hz), 5.37 (1 H, d, J = 18 Hz), 5.85 (1 H, br s), and 6.34 (1 H, dd, J = 18 and11 Hz); IR (neat) 3350, 3080, 3020, 1675, and 1570 cm⁻¹; MS (EI, rel intensity) 110 (7), 92 (50), and 91 (100). Anal. Calcd for C₇H₁₀O: C, 76.42; H, 9.16. Found: C, 76.22; H, 9.26.

Acknowledgments. This work was supported by an Institutional Research Grant (1N-13) from the American Cancer Society and by a DuPont Young Faculty Grant. The NMR instrument was purchased through a departmental NSF instrument grant (CHE 76-05167).

Registry No.-7a, 68332-20-7; 7b, 68332-21-8; 8a, 68332-22-9; 9a, 32958-83-1; 10a, 68332-23-0; 10b, 68332-24-1; 11, 68332-25-2; 12, 68332-26-3; 13, 68332-27-4; 14a, 68332-28-5; 14b, 68332-29-6; 15, 68332-30-9; 16, 68332-31-0; 1-vinylcyclohexene, 2622-21-1; 1-vinylcyclopentene, 28638-58-6; mercuric acetate, 1600-27-7; dimethyl acetylenedicarboxylate, 762-42-5.

References and Notes

- (1) NSF-URP, Summer 1978.
- W. Treibs and M. Weissenfels, *Chem. Ber.*, **93**, 1974 (1960). This same trend was observed in the Diels-Alder reaction with maleic an-(a) This same trend was observed in the Diels-Alder Featron with maler and hydride; **7a**, which reacted somewhat faster, gave a nearly 1:1 mixture of diastereomeric acetates while **8a** gave a single diastereomer. These adducts were not characterized beyond ¹H NMR analysis of the crude products.
 (4) L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry", Pergamon Press, New York, 1969. - 200
- A. Streitwieser, Jr., "Solvolytic Displacement Reactions", McGraw-Hill, New
- (5) ork, 1962, pp 94-98.
- (6) Melting points were determined on a Kofler hot-stage and are uncorrected. Elemental analyses were performed by M-H-W Laboratories. Phoenix, Ariz. Column chromatography was carried out under pressure on silica gel H for TLC (EM 7736, Type 50) using a modification of the short column chromatography technique.⁷ Gas chromatography was performed with a 10 ft \times $\frac{1}{4}$ in., 10% SE-30 column. Infrared spectra were recorded on a Perkin-Elmer

237 instrument, nuclear magnetic resonance spectra were obtained on a Varian HFT-80 instrument, and mass spectra were determined on an AEI MS-30 (electron impact, EI) and Finnigan 4000 (chemical ionization, CI) instrument.

7) B. J. Hunt and W. Ribgy, Chem. Ind. (London), 1868 (1967).

(8) Most of the literature reports for the preparation of 1-vinylcyclohexene [e.g., P. A. Robins and J. Walker, J. Chem. Soc., 642 (1952)] involve KHSO₄-catalyzed dehydration of 1-vinylcyclohexanol. It is critical that the KHSO₄ be not too acidic in order to prevent extensive polymerization and isomerization to 1- and 2-ethylcyclohexa-1,3-diene during dehydration. We prepared the dehydrating agent by adjusting the pH of an aqueous K₂SO₄ solution to 1.9 with H₂SO₄ and then evaporating the water.

Asymmetric Chemistry. Alcohol Effects upon the (+)-1,2,2-Trimethyl-1,3-bis(hydroxymethyl)cyclopentane-Lithium Aluminum Hydride Reduction of Acetophenone

Thomas H. Johnson* and Kurtis C. Klein

Department of Chemistry, Kansas State University, Manhattan, Kansas 66506

Received August 22, 1978

The synthesis of optically active compounds continues to command a good deal of attention. One widely studied aspect of this field has been the production of chiral carbinols from the reduction of achiral ketones with chiral-hydride reagents.¹⁻³ One method has employed lithium aluminum hydride and a chiral diol to effect asymmetric induction. A successful variation of this theme has employed 1 equiv of an achiral primary alcohol in addition to the chiral diol.^{2,3} The success of this latter method was attributed to reaction of the achiral alcohol with the less sterically hindered hydride of the proposed diol-aluminum-dihydride intermediate.² The incipient monohydride would then be in a steric environment more conducive to asymmetric induction than would be the corresponding dihydride. Primary alcohols, usually ethanol or benzyl alcohol, had been used because of their anticipated stability to disproportionation in the tris(alkoxy)aluminum hydride stage.⁴ The results of this paper clearly demonstrate that an appreciable enantiomeric excess, relative to ethanol, can be obtained by using other alcohols and, in fact, may be preferable to ethanol or benzyl alcohol.

In preparing a model system to study alcohol effects we felt it was important to prepare an optically active diol which was not only easy and inexpensive to prepare but devoid of other functional groups as well.⁶ Such a diol was available in (+)-1,2,2-trimethyl-1,3-bis(hydroxymethyl)cyclopentane (1), which can be prepared in one step from readily available and inexpensive (+)-camphoric acid. Examination of a model of 1, after reaction with lithium aluminum hydride, suggested the presence of one hindered hydride (syn) and one very unhindered hydride (anti) as was desired.

Acetophenone was reduced by lithium aluminum hydride, 1, and an achiral alcohol in a molar ratio of 1:1:1:1. The results with various alcohols are given in Table I. As with other chiral diols,^{2,3} the addition of an achiral alcohol to the reducing medium did increase the amount of enantiomeric excess although a decrease in reduction was also realized. Interestingly, ethanol and benzyl alcohol, two of the most used alcohols, showed the least improvement in enantiomeric excess. 2-Propanol proves to be a far better additive than either ethanol or benzyl alcohol. The difference between 2-propanol and ethanol on this reduction was tested in other solvents and 2-propanol was found to be the better additive in every instance (Table II). Reductions employing tert-butyl alcohol as the achiral alcohol also gave greater enantiomeric excesses than in ethanol and benzyl alcohol reactions but less than when 2-propanol was used (Table I).

The fact that the added achiral alcohols are having a de-

Table I. Reduction of Acetophenone in Ether-THF (3:1) by Lithium Aluminum Hydride, 1, and Achiral Alcohol^a

alcohol	registry no.	yield, % ^b	ee, % ^c
none		96	7.7
methanol	67-56-1	82	10.1
ethanol	64-17-5	81	10.0
2-propanol	67-63-0	78	18.5
tert-butyl alcohol	75-65-0	76	13.1
benzyl alcohol	100-91-6	75	8.5

^{*a*} The ratio of acetophenone, lithium aluminum hydride, 1, and achiral alcohol was 1:1:1:1. Where no achiral alcohol was used the ratio was 2:1:1. ^{*b*} Percent yield of methylphenylcarbinol. ^{*c*} Enantiomeric excess. Determined by dividing $[\alpha]_D$ for the isolated carbinol (*c* 5, EtOH) by 42.5 (the value for enantiomerically pure carbinol, ref 2) and multiplying by 100%. All reductions gave (+)-carbinol.

Table II. A Comparison of 2-Propanol and Ethanol in Various Solvents in the Reduction of Acetophenone^a

_ solvent	alcohol	yield, % ^b	ee, % ^c
ether	ethanol	78	4.2
ether	2-propanol	71	5.3
ether-THF $(3:1)^d$	ethanol	81	10.0
ether-THF (3:1)	2-propanol	78	18.5
THF	ethanol	43	7.2
THF	2-propanol	41	17.1
dioxane	ethanol	52	9.1
dioxane	2-propanol	42	12.5

^{*a*} The ratio of acetophenone, lithium aluminum hydride, 1, and achiral alcohol was 1:1:1:1. ^{*b*} Percent yield of methylphenylcarbinol. ^{*c*} Enantiomeric excess. Determined by dividing $[\alpha]_D$ for the isolated carbinol (*c* 5, EtOH) by 42.5 (the value for enantiomerically pure carbinol, ref 2) and multiplying by 100%. All reductions gave (+)-carbinol. ^{*d*} This ratio of solvents represents an optimization for both yield and enantiomeric excess.

monstrable effect upon the reaction is apparent by comparison of the 7.7% enantiomeric excess value obtained when no achiral alcohol was used to those obtained for the various alcohols. When the reduction of acetophenone was carried out using lithium aluminum hydride and 1 in a ratio of 1:10:10 (ether-THF, 3:1), the enantiomeric excess in the resulting carbinol fell to 1.8%. These two sets of results suggest a difference in the two hydrides in the proposed dihydride intermediate. Unfortunately, this reaction is not quite as simple as it might appear. When the reduction of acetophenone with lithium aluminum hydride, 1, and 2-propanol in a ratio of 1: 2:2:2 (ether-THF, 3:1) was run, the enantiomeric excess of the resulting carbinol fell to 8.3%. This experiment suggests that some disproportionation is occurring. Such an event would produce a variety of hydride species, only some of which would be chiral. Furthermore, some of these hydride species would be more effective reducing agents than others.⁷ The results would seem to indicate that the achiral species are the more effective reducing agents.

The sum of this data suggests a couple of points which are germane to the problem of producing optically active alcohols via lithium aluminum hydride-chiral diol-achiral alcohol reducing systems. First, achiral alcohols such as 2-propanol and *tert*-butyl alcohol may well be better additives than the traditional ethyl and benzyl alcohols and their effect upon asymmetric induction should be tested in future systems. Second, the problem of (alkoxy)aluminum hydride disproportionations appears to be a real one and necessarily limits the amount of excess hydride which can be used in these reactions. As a consequence, reactions giving low conversions, e.g., the THF and dioxane reactions in Table II, cannot be increased by merely increasing, substantially, the amount of hydride reducing agent.